Design and Implementation of a Machine Learning-Based Network Optimization Recommendation System with Web Performance Evaluation

Main Article Content

Ahmad Rifai
Asri Wulandari
Alfin Hikmaturokhman

Abstract

Network optimization is an essential process to maintain the quality of cellular services. However, manual analysis of drivetest data to determine optimization recommendations is time-consuming and inefficient. This study aims to develop a machine learning-based network optimization recommendation system implemented in the form of a website to assist RF Engineers in analyzing drivetest data more efficiently. The system uses a Random Forest Classifier to recommend the type of network optimization, achieving an average accuracy, precision, recall, and F1-score of 95.5%, and a Random Forest Regressor to predict network performance parameters after optimization, with an average R² of 0.9618, MAE of 0.0178, MSE of 0.00078, and RMSE of 0.0286. The dataset used is obtained from drivetests consisting of longitude, latitude, RSRP, SINR, Downlink Throughput, and Uplink Throughput parameters. The website was developed using the Flask framework and tested using System Usability Scale (SUS), Google Lighthouse, and GTmetrix. SUS testing obtained an average score of 79.16, categorized as “Good,” indicating that the website is easy to use and understand. Google Lighthouse testing obtained a performance score of 82, indicating good and responsive loading performance. GTmetrix testing showed an average performance score of 90.5% and structure score of 90.25%, indicating a well-structured website with optimal loading performance across various global server locations. This system can assist RF Engineers in analyzing drivetest data and making network optimization decisions more quickly, practically, and efficiently. 

Article Details

Section
Telecommunication

References

A. Fauzi, M. F., Nordin, R., Abdullah, N. F., & Alobaidy, H. A. (2022). Mobile Network Coverage Prediction Based on Supervised Machine Learning Algorithms. IEEE Access.

Almajid, A. S., & Arifudin, R. (2021). Multilayer Perceptron Optimization on Imbalanced Data Using SVM-SMOTE and One-Hot Encoding for Credit Card Default Prediction. Journal of Advances in Information Systems and Technology, 67-74.

Dako, R. D., & Ridwan, W. (2022). Pengukuran Usability terhadap Aplikasi Tesadaptif.Net dengan System Usability Scale. Jambura Journal of Electrical and Electronics Engineering , 207-212.

Damayanti, L., Damelia, Regina, S., Wulandari, A., Hikmaturokhman, A., & Hidayatullah, A. (2023). Design and Build4G OpenRadio Access Network at SmartLab Politeknik Negeri Jakarta. JITE (Journal of Informatics and Telecommunication Engineering), 414-423.

Das, D., Nayak, M., & Pani, S. K. (2019). Missing Value Imputation-A Review. International Journal of Computer Sciences and Engineering, 548-558.

Didigwu, F. U., & Anichi, J. (2024). Prediction of Mobile Network Performance Using Supervised Machine Learning Models. International Journal of Advanced Research in Science and Technology, 1533-1546.

Eyceyurt, E., Egi, Y., & Zec, J. (2022). Machine-Learning-Based Uplink Throughput Prediction from Physical Layer Measurements. Electronics.

Geng, S. (2024). Analysis of the Different Statistical Metrics in Machine Learning. Highlights in Science, Engineering and Technology, 350-356.

Google. (t.thn.). Lighthouse. Diambil kembali dari Chrome for developers: https://developer.chrome.com/docs/lighthouse

GTmetrix. (2020, 11 16). Everything You Need to Know About GTmetrix Reports. Diambil kembali dari GTmetrix Website: https://gtmetrix.com/blog/everything-you-need-to-know-about-the-new-gtmetrix-report-powered-by-lighthouse/#performance-tab

Hasan, M. K., Alam, M. A., Roy, S., Dutta, A., Jawad, M. T., & Sunanda Das. (2021). Missing value imputation affects the performance of machine learning: A review and analysis of the literature (2010–2021). Informatics in Medicine Unlocked, 1-23.

Hidayanti, N. H. (2022). Analisis Performa Website Kantor Pencarian dan Pertolongan Palembang Menggunakan GTmetrix. Seminar Nasional Teknologi Dan Multidisiplin Ilmu SEMNASTEKMU.

Hidayat, A. L., Zulqan, H., & Triyono, G. (2025). Klasterisasi Provinsi di Indonesia Berdasarkan Angka Harapan Hidup Menggunakan K-Means dengan Evaluasi Elbow Method. JSiI | Jurnal Sistem Informasi, 81-85.

Jovic, A., Brkic, K., & Bogunovic, N. (2015). A review of feature selection methods with applications. 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 1200-1205.

Mulyo, I. A., & Heikal, J. (2022). Customer Clustering Using The K-Means Clustering Algorithm in Shopping Mall in Indonesia. Management Analysis Journal, 365-371.

Ningrum, A. A., & Ihsanudin. (2023). Penerapan Framework Flask Pada Machine Learning Dalam Memprediksi Umur Transformer. KONVERGENSI, 51-59.

Patro, S. G., & Sahu, K. K. (2015). Normalization: A Preprocessing Stage. International Advanced Research Journal in Science, Engineering and Technology, 20-22.

Pranolo, A., Setyaputri, F. U., Paramarta, A. K., Triono, A. P., Fadhilla, A. F., Akbari, A. K., . . . Uriu, W. (2024). Enhanced Multivariate Time Series Analysis Using LSTM: A Comparative Study of Min-Max and Z-Score Normalization Techniques. ILKOM Jurnal Ilmiah, 210-220.

Rachmatullah, M. I. (2022). Proposed Modification of K-Means Clustering Algorithm with Distance Calculation Based on Correlation. Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), 136-143.

S. Sathyanarayanan, & Tantri, B. R. (2024). Confusion Matrix-Based Performance Evaluation Metrics. African Journal of Biomedical Research, 4023-4031.

Sholihah, N. N., & Hermawan, A. (2023). Implementation Of Random Forest And SMOTE Methods For Economic Status Classification In Cirebon City. Jurnal Teknik Informatika (JUTIF) , 1387-1397.

Wahid, H., Abdul Razak, N. I., & Che Abdullah, S. A. (2022). Machine Learning Model for Performance Prediction in Mobile Network Management. Journal Of Electrical And Electronic Systems Research, 101-107.