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 The rapid development of network technology necessitates a system capable of adapting 
to these advancements. Technologies such as 5G, IoT, and Cloud Computing demand 
flexible and easily configurable network systems. However, the interface differences 
among providers often hinder this process. Previously, standard connecting protocols 
were primarily complex and slow to support new protocols. As a solution, P4 emerges 
as a programming language that allows for the configuration of packet processing and 
header design according to needs directly in the data plane. This paper discusses the 
fundamentals of P4 and the services it can run. To clarify its functions, this manuscript 
explores implementation cases within SDN/IP networks and Named Data Networking 
(NDN) architecture, including Load Balancing, Caching, Security, Congestion Control, 
In-band Network Telemetry, Forwarding, and Routing. We also map existing research 
on each component of SDN and NDN technologies. The manuscript concludes by 
reviewing challenges and research opportunities for P4 as guidance for further studies. 
 

 
1. Introduction   

The development of information and communication technology (ICT) is rapidly advancing with 
technologies such as the Internet of Things, 5G, cloud computing, caching, and In-Band Network Telemetry 
(INT). Referring to an article discussing the hype cycle of networking technologies, advancements such as IoT, 
5G, and Cloud Computing are expected to remain trends for development over the next 2 to 10 years (Gartner, 
2023). However, configuring these technologies can take time due to the entanglement between the operating 
system and the data plane and the varying interfaces available for each vendor. To address this issue, a Software-
Defined Network (SDN) separates the control plane and the data plane (Kaur et al., 2021). SDN is a centralized 
network architecture in which one node is a controller that manages forwarding nodes. Therefore, SDN is a 
flexible, dynamic, and easy-to-manage architecture (Kim & Feamster, 2013). OpenFlow is a standard protocol 
used for communication between the control plane and the data plane (McKeown et al., 2008). 

Initially, OpenFlow interfaces were simple. However, over time, the specifications became increasingly 
complex, resulting in longer headers. Additionally, OpenFlow has a fixed data plane, which can cause delays 
when implementing new services or network protocol updates. Programming Protocol-independent Packet 
Processors (P4) is a high-level programming language that can be used to program the data plane (Bosshart et 
al., 2014; Budiu et al., 2017).  

SDN was developed as a solution to the challenges posed by traditional network architecture in keeping 
up with rapid and diverse technological advancements. Figure 1 illustrates the evolution from the Down-Top 
design to the Top-Down design. SDN architecture design is known as Down-Top design, where the data plane 
remains fixed and cannot be changed. P4 creates a top-down design that allows for the programming of the data 
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plane and describes how packets are processed, resulting in increased flexibility. P4 capabilities and flexibility 
enable it to adapt to the development of services in IP or SDN networks, as well as in new networks such as 
Named-Data Networking. Named-Data Networking is a novel network architecture that prioritizes data or content 
by assigning unique names to requested data or content, as opposed to IP addressing (Afanasyev et al., 2018; L. 
Zhang et al., 2014).   

 

 
Figure 1. Evolution of Network Architecture 

 
While many excellent survey papers are available, most concentrate solely on the use of P4 in IP/SDN 

network architecture. However, only a few papers discuss P4 in Named-Data Networking (NDN) (Goswami et 
al., 2023). This paper maps existing research on foundational protocols (such as OpenFlow, etc.) and P4, focusing 
on case studies in SDN and NDN. SDN is a technology that separates the control plane from the data plane and 
is currently widely used to enhance network flexibility and load efficiency. NDN is a content-based technology 
being developed as a candidate for the future internet, focusing on communication flexibility and efficiency. The 
paper also discusses P4 in detail, including its working mechanisms and components, along with the advantages 
it offers. Additionally, the position of P4 is explained within the context of SDN and NDN to provide a clearer 
picture of its role. Finally, this paper identifies challenges as well as future research opportunities that are 
important to pursue. 

Figure 2 shows that the P4 implementation is divided into two network architectures: Software-Defined 
Networking and Named Data Networking. Additionally, the compiler is a separate component of P4. SDN is 
divided into several implementations, including Load Balancing, Caching, Security, Congestion Control, and In-
Band Network Telemetry (INT). NDN is divided into three parts: Forwarding, Routing, and Security. 

The paper is structured as follows: (ii) This section will describe the P4 program language and architecture, 
as well as its benefits. (iii) The research conducted on P4, including security, load balancing, caching, and 
compilers, will be explained. (iv) Open research opportunities and challenges of P4 will be discussed. (v) Finally, 
conclusions will be drawn. The papers selected for this study were identified using the keywords "Programming 
Protocol-independent Packet Processors (P4)," "Named-Data Networking," "Software-Defined Network," "P4-
NDN," and "Programmable Network". 
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Figure 2. Classification of P4 Implementation 
 

2. Programming Protocol-independent Packet Processors (P4) 

P4 is a programming language used to specify how packets are processed by the data plane (forwarding 
plane). Although it was initially designed for programming switches, it is now used for various purposes. It is 
important to note that P4 is limited to programming the data plane and cannot be used for the control plane. 

 
Figure 3. Traditional Switch vs P4-Defined Switch 
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Figure 3 illustrates the difference between traditional switches and programmable switches (p4-defined 
switches). In traditional switches, the control plane and data plane are fixed according to the switch chipset and 
cannot be programmed. However, in programmable switches, the control plane is fixed, and the data plane can 
be described using the P4 language as needed, even though the communication between the two still uses the 
same channel. 

2.1 P4 Forwarding Model 

 
Figure 4. P4 Forwarding Model 

 
The P4 forwarding model comprises multiple function blocks that process incoming packets until they are 

ready for forwarding, as shown in Figure 4. Each block has a specific packet processing function described in 
the P4 programming language. Details for the P4 programming documentation can be found in (P4 16 Language 
Specification Version 1.2.2, 2021) 

2.1.1 Parser 

The parser's task is to extract and recognize each incoming packet based on its header. While this may 
seem simple, it can be quite complex for certain packets, such as NDN packets, which require a flow of conditions 
to be added during extraction. 

2.1.2 Match + Action 

After the parser extracts the packet, it is forwarded to match+action. This function determines how the 
packet will be treated, including whether it will be dropped, forwarded, duplicated, or handled in another way. 
The match+action function block has two parts: ingress and egress. Although the functions are similar, 
match+action ingress handles incoming packets while match+action egress handles outgoing packets. 

2.1.3 Deparser 

After the parser extracts and processes the packet using match+action, it is then passed to the deparser 
function block. The deparser is responsible for reconstructing the packet header that has been processed for 
forwarding. 
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2.2 Defines the Header Format 

The format of the header is a crucial aspect of the P4 program. It defines the structure and width of the 
packet header, including IPv4, UDP, VLAN, and other protocols. P4's flexibility lies in its capacity to create 
custom headers and define new packet headers, such as NDN, BPv6, and BPv7. 

2.3 P4 target architecture model 

The P4 architecture is beneficial for describing each function block in the P4 program before 
implementation on the target. Initially, there was only one P4 architecture, namely the Protocol-Independent 
Switch Architecture (PISA) in P414. At that time, the available PISA architecture did not include deparsers. 
However, as P4 developed, P416 now supports the PISA architecture with improvements, as well as other 
architectures such as the V1Model Switch and Portable Switch Architecture (PSA). 

3. Research of P4 

Considerable research has been conducted on the P4 programming language, covering topics ranging from 
its fundamental components, such as compilers and language structures, to its application in emerging services 
and package types. This section will describe some of the research that has been classified previously, not only 
within the scope of IP networks but also within the scope of P4 research on NDN networks. 

3.1  P4 Compiler 

The compiler on the P4 is one of the components responsible for translating the program to specific targets 
and also mapping the targets to particular target switches to generate the appropriate configuration for the device. 
P4 itself has a default compiler called P4 compiler, but the compiler has limitations for multiple targets. The 
T4P4S compiler can overcome this limitation, as T4P4S can compile for multiple targets. Furthermore, the T4P4S 
compiler's results for specific targets demonstrate superior performance compared to OpenvSwitch (OVS) (Vörös 
et al., 2018). However, the T4P4S compiler has its limitations, as it is still susceptible to numerous bugs and 
issues in the P4_16 program. 

Ibanez et al. developed a compiler designed to overcome the performance limitations of the built-in P4 
compiler. By altering the compilation workflow, this compiler aims to produce performance similar to the original 
devices, but its use will be limited to NetFPGA devices only (Ibanez et al., 2019). On the other hand, Zhu et al. 
introduced a compiler that supports virtual register memory, allowing re-stateful applications to run 
simultaneously without interfering with switch operations (Zhu et al., 2022). Furthermore, Wang et al. used an 
isolation mechanism to improve packet processing performance. This mechanism allows each module to run 
securely and share resources. It is integrated with Menshen, which supports invariant processing behavior to 
maintain system performance (Wang et al., 2022). 

3.2 P4 on SDN/IP Network 
3.2.1 In-Band Network Telemetry 

In-band Network Telemetry (INT) represents a novel approach to measuring network status, diverging 
from traditional measurement techniques and software-based measurements. INT employs a methodology 
whereby the metadata of each node is extracted and incorporated into packets, which are subsequently extracted 
at the final node. This approach enables the retrieval of status data in real-time, approaching real-time. However, 
inserting packets into the network introduces a significant packet overhead, potentially impacting network 
performance. 

The development of an INT capable of monitoring network conditions in real-time and the implementation 
of a packet scheduling method that will be executed in the event of packet congestion to maintain network 
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performance was explained in the paper by J. Geng et al. (Geng et al., 2018). Furthermore, based on the research 
conducted by B. Guan et al., an INT can reduce overhead by imposing restrictions on monitoring nodes to 
optimize the monitoring process and reduce overhead (Guan & Shen, 2019). To Develop a flexible INT to classify 
packets using rate-based and event-based strategies, D. Suh et al. explained the method in their paper (Suh et al., 
2020). This approach has the potential to reduce the overhead associated with INT packets.  

The In-band Network Telemetry (INT) method proposed by PINT uses a probabilistic approach to set the 
maximum amount of overhead on each packet and divides the information into multiple packets. Three 
aggregation operations support encoding data accumulated into packets, namely per-packet aggregation, static 
per-stream aggregation, and dynamic per-stream aggregation (Ben Basat et al., 2020). Furthermore, a weight-
based approach is used in an INT method designed to track and aggregate flows so that INT can run according 
to the network conditions (Mostafaei & Afridi, 2021). On the other hand, Osiński et al. implemented an end-to-
end visibility method in INT that not only serves as a network condition meter but also as a network problem 
detector. This detection process is based on quality of service parameters (Osiński & Cascone, 2022).  

3.2.2 Security 

Security is a paramount concern in network operations. The current landscape of cyber-attacks is 
characterized by a high degree of diversity, with the potential to cause significant harm to users. Among the most 
prevalent forms of attack is the Distributed Denial of Service (DDoS) attack, which involves flooding a system 
or server with fake traffic until it becomes overwhelmed and fails. P4 provides a solution to detect and mitigate 
the data plane, thus enabling rapid handling.  

Lapolli et al. proposed a real-time DDoS detection method in the data plane, utilizing Shannon entropy 
calculation as a parameter to distinguish fake and genuine traffic (Lapolli et al., 2019). On the other hand, 
Dimolianis et al. developed a DDoS detection scheme that utilizes various features, including the total amount 
of incoming traffic, network significance, and the symmetry ratio between incoming and outgoing packets. 
However, this method has the disadvantage of being unable to detect incoming packets below 5 Mpps (Dimolianis 
et al., 2020).  

To reduce the errors of increasingly complex networks, Grewal et al. developed a system that utilizes 
Information Flow Control (IFC) methodology to protect confidentiality and integrity and offers flexibility, 
generality, and lightweight nature (Grewal et al., 2022). Kecskeméti et al. proposed a network security method 
that operates at a line rate, enabling rapid identification and mitigation of security threats. P4RROT implements 
various network security protocols, including those for NTP, ports, and packets (Kecskeméti et al., 2023). Reddy 
et al. introduced a security system that runs on the data plane by adding machine learning (ML) to detect attacks, 
using a decision tree algorithm to determine if an attack is occurring. The use of ML in packet classification can 
reduce attacks by 50% (Reddy et al., 2023). However, implementing ML necessitates the availability of extensive 
datasets to facilitate the recognition of attack types. Integrating network security on the data plane based on P4 
programming offers advantages in the form of enhanced flexibility in managing packet processing and rapid 
response in detecting and resolving network threats.  

3.2.3 Caching 

Caching is a temporary storage mechanism for data. Deploying caching on a network can enhance network 
performance by storing previously requested content. When a second request for the same content is received, 
the request is not directed to the end-point server but instead to the nearest node or server that is caching the 
content. This reduces the latency associated with retrieving the requested content.  

Zhao et al. introduced a data plane caching technique based on the least recently used (LRU) approach, 
potentially boosting performance by up to 35% (Zhao et al., 2023). Building on this, Friedman et al. designed a 
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more versatile caching framework that supports multiple strategies, including LRU, least frequently used (LFU), 
first-in, first-out (FIFO), and hyperbolic caching, allowing flexible configurations to meet different requirements 
(Friedman et al., 2023). In another approach, Sagkriotis et al. developed an in-network caching solution 
specifically to improve the performance and throughput of Kubernetes environments (Sagkriotis & Pezaros, 
2022). While caching can improve network performance, the implementation of caching using P4 currently needs 
to be more effective for content that is large enough due to the limited memory capacity of P4. 

3.2.4 Load Balancing 

Load balancing is a technique employed to distribute traffic load across a network. It is necessary because 
a high load will inevitably reduce the network's overall performance. Ensuring a balanced load can more 
consistently maintain the network's performance.  

Zhang et al. proposed the LBAS framework to implement load balancing in the data plane, utilizing a 
dynamic weight algorithm to reduce latency effectively (J. Zhang et al., 2020). Meanwhile, the study by Kulkarni 
et al. explored the implementation of various load-balancing techniques in the data plane using the P4 
programming language, which showed promising results, particularly with the DPDK and SHELL techniques. 
However, despite the positive outcomes, these techniques still experienced performance fluctuations and lacked 
stability (Kulkarni et al., 2022). To address these challenges, Zheng et al. proposed a more adaptive approach by 
introducing a machine learning-based load balancer using the Reinforcement Learning (RL) method. The 
integration of RL allows the load balancer to learn from network behavior, creating a more responsive and 
efficient system (Zheng et al., 2023). 

Furthermore, Barbette et al. emphasized the importance of ensuring connection consistency in load 
balancers through the concept of per-connection consistency (PCC), which is crucial for maintaining continuous 
server connections without compromising network performance. Their study successfully introduced a load 
balancer that supports PCC while still maintaining optimal performance (Barbette et al., 2022). Additionally, Xie 
et al. highlighted the current approach in load balancing, which uses a scheduling scheme based on ECMP and 
manages elephant and mouse flows within the network path. This approach often results in high loads and 
potential congestion. To address this issue, their research proposed a solution that predicts elephant flows and 
reschedules them to avoid congestion, thereby improving overall network performance (Xie et al., 2023). 

3.2.5 Congestion Control 

Congestion can occur when the network is busy or when many users are accessing it. In such cases, the 
network condition is congested, which decreases the network's performance. One method for overcoming 
congestion is Enhanced Congestion Notification (ECN), which is less effective than it could be. Shahzad et al. 
proposed Enhanced ECN on TCP using the ECN Intercept method, which marks ECN bits at a certain threshold 
to reduce additional traffic and notification time (Shahzad et al., 2020). On the other hand, Tukovic et al. 
introduced P4air to improve fairness in congestion control algorithms, where most of the current congestion 
control algorithms exhibit unfair behavior towards packets, which may ultimately degrade performance. P4air is 
proposed to optimize resource utilization and reduce RTT (Turkovic & Kuipers, 2020). 

De Sensi et al. introduced the Canary method, a congestion reduction technique that uses a dynamic tree 
algorithm and incorporates the concept of load balancing. Data from each node is used as a parameter for 
congestion control (De Sensi et al., 2024). On the other hand, Wu et al. proposed P4SQA, a P4-based method on 
switches to guarantee quality of service (QoS) in software-defined networking (SDN). P4SQA uses two phases: 
classification and queue management. Classification is performed with the help of machine learning, and the 
method is able to improve the overall network performance (Wu et al., 2023). 
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3.3 P4 on NDN Network 

3.3.1 Forwarding 

In NDN networks, packets are sent by forwarding using forwarders. Signorello et al. implemented a Named 
Data Networking (NDN) network using the P4 programming language. This research explains the mechanism in 
detail, but there are still some things that could be improved, such as the limited number of prefixes, the absence 
of caching, and the use of an older version of the P4 language (Signorello et al., 2016). Miguel et al. addressed 
these shortcomings by increasing the number of prefixes, using the latest version of the P4 language, and 
introducing caching, an essential feature in NDN networks. With these measures, the performance of P4-based 
NDNs can be improved, as shown by previous studies. However, implementing the modifications to the switch 
library in native devices may present challenges (Miguel et al., 2018). 

Karrakchou et al. proposed an enhanced architecture for Named Data Networking (NDN) networks, where, 
previously, each service was provided at the application layer. In this study, such services are moved to the 
network layer to meet the needs of the application layer, thereby improving performance and managing resources 
more effectively (Karrakchou et al., 2020). On the other hand, Takemasa et al. proposed a high-speed packet 
forwarding technique up to terabits by combining methods between switches and multiple servers to obtain large 
DRAMs used to store FIBs and prefixes. However, this research still needs to include a content store for caching 
(Takemasa et al., 2021). 

Hou et al. developed an NFD forwarder using the P4 programming language, introducing a previously 
missing caching feature. This addition, achieved by leveraging the content store in NFD, enables faster response 
times by up to 60% (HOU et al., 2022). In contrast, Yu et al. proposed a separate caching mechanism, which 
decouples caching management from the forwarding plane. This separation helps the system maintain 
performance while offering improved speed compared to earlier approaches (Yu et al., 2022). 
3.3.2 Routing 

Guo et al. tried to incorporate the concept of Software-Defined Networking (SDN) into Named-Data 
Networking (NDN) to ease the integration of NDN networks. If this concept is successfully realized in a P4 
environment, integration with other networks will become more accessible while proving that the NDN concept 
is useful. With this method, the number of routed packets can be reduced by 43%, and the routing convergence 
time is reduced by 12% (Guo et al., 2021). 
3.3.3 Security 

Liu et al. identified that adding cache to a P4-based Named Data Networking (NDN) network is still a 
challenge due to P4's small memory capacity and limited availability. In addition, content-centric security issues 
at the application layer must be tailored to the application, so P4 is used to add a security layer at the network 
level. Adding a separate cache for more expansive storage and a CPA-based encryption algorithm makes the P4-
based NDN network more available for caching and has better security (Liu et al., 2022). 
3.3.4 Others 

Madureira et al. explain that the difference in networking concepts between Named Data Networking 
(NDN), which is content-based, and IP, which is address- or location-based, often causes them not to work well 
together. To address this, this research introduces NDN Fabric, a new architecture and protocol that integrates 
NDN networking for communication in the edge network and path-based communication in the core network. 
NDN Fabric utilizes P4 to detect packets and take action in determining routing instructions. This concept can 
increase speed up to 150 times and speed up network distribution to 100 times (Madureira et al., 2021). 

Refaei et al. identified that tactical networks are typically characterized by Denied, Disrupted, 
Intermittently connected, and Limited-bandwidth (D-DIL) network environments and fluid and dynamic 
networks. In this research, traffic management uses P4 with two main components: a policy engine (to create 
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policies for applications with filters and actions) and an enforcement engine (to determine actions based on the 
set policies). This method can improve bandwidth efficiency, but to achieve better performance, a large enough 
policy database is required (Refaei et al., 2021). 

Meanwhile, Zha et al. explained that NDN sends complex flow table entries, which results in many flow 
table entries, increases the interaction delay between the control and data planes, and reduces the speed. This 
research offers a solution using bitmask multicast with P4, which implements the Pending Interest Table (PIT) 
in the P4 register and changes the structure of the PIT; if there is an incoming request, the system will calculate 
the hash and find a suitable bitmask for multicast (Zha et al., 2022). 

Rosa et al. address the challenges associated with managing the Forwarding Information Base (FIB) and 
Longest Name Prefix Matching (LNPM) in conventional Named Data Networking (NDN) architectures, 
particularly in terms of efficiency and latency. They introduce a novel approach that eliminates the reliance on 
hashing to enhance the speed of name matching and decrease latency in data retrieval. This method is 
implemented within a programmable data plane, enabling dynamic modifications to data management policies. 
Simulation results demonstrate that this approach can reduce name-matching latency by as much as 30% and 
enhance network throughput, thereby providing a more efficient solution for managing FIB and LNPM in NDN 
(Rosa & Silva, 2022). 

Table 1. Summary of the P4 article and methods used 

Group Main Mechanism 

Software-
Defined 
Network 

Compiler 

Generates a target-agnostic switch code relying on a NetHAL (Vörös et al., 2018). 
Translate P4 program to PC program (Ibanez et al., 2019), 
Virtual Memory Register to the compiler (Zhu et al., 2022), 
Uses isolation mechanism and Menshen design (Wang et al., 2022). 

In-band 
Network 

Telemetry 

Integrate SDN monitoring and Network Management Module using P4 (Geng et al., 
2018), 
Using P4 to verify checksums and adding rules at ingress (Guan & Shen, 2019), 
Using Rate-based and Event-based strategies (Suh et al., 2020), 
Using telemetry information as a probabilistic value (Ben Basat et al., 2020), 
Using weighted-based technique and tracking flows (Mostafaei & Afridi, 2021), 
Uses eBPF to extent the Linux network stack (Osiński & Cascone, 2022). 

Security 

Using Shannon entropy for DDOS characterization calculation (Lapolli et al., 2019), 
Combining multiple traffic features to detect DDOS attacks (Dimolianis et al., 2020), 
Using Information-flow control (IFC) system on the data plane (Grewal et al., 2022), 
Implement some security techniques on the data plane (Kecskeméti et al., 2023), 
Using machine learning to detect mitigate adversarial attacks on the data plane (Reddy 
et al., 2023). 

Caching 
Caching is made on the data plane with the LRU method (Zhao et al., 2023), 
Adding keys to packets for caching detection (Friedman et al., 2023), 
Using CRAQ on P4 with PSA architecture (Sagkriotis & Pezaros, 2022). 

Load Balancing 

Using LBAS framework by implementing partial dynamic weight algorithms (J. Zhang 
et al., 2020), 
Using short-lived flow and long-lived flow algorithms (Kulkarni et al., 2022), 
Using dynamic tree alforithm for congestion control (Zheng et al., 2023), 
Using neural computing and AQM algorithm (Barbette et al., 2022). 

Congestion 
Control 

Using the ECN packet intercept method on end devices (Xie et al., 2023), 
Load balancing written in P4 language with multiple loads balancing strategies (Shahzad 
et al., 2020), 
Using the reinforcement learning method and implemented on a switch (Turkovic & 
Kuipers, 2020), 
Create a block to establish an arbitrary load balancing mechanism (De Sensi et al., 2024), 
Using Online Elephant Flow Prediction for load balancing (Wu et al., 2023). 

Named-Data 
Networking Forwarding 

Implement NDN network with P4_14 (Signorello et al., 2016), 
Implement NDN network with P4_16 (Miguel et al., 2018), 
Implement services at the network layer (Karrakchou et al., 2020), 
Combination of switches and multiple servers for prefix storage (Takemasa et al., 2021), 
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Group Main Mechanism 
Added cache by utilizing the cache from NFD (HOU et al., 2022), 
Added cache with the cache management separate from the forwarding plane (Yu et al., 
2022). 

Routing Integrating NDN and TCP/IP networks with SDN concept (Guo et al., 2021). 

Security Encryption at the network layer with CPA-Based encryption algorithm (Liu et al., 2022). 

Others 

Integrate SDN network (core network) with NDN (edge network) (Madureira et al., 
2021), 
Add a policy to each application and determine the action according to the policy (Refaei 
et al., 2021), 
Change the PIT structure to maintain a fixed bit mask to multicast the corresponding 
interface (Zha et al., 2022), 
Utilizing a Hash-Free method for the FIB and LNPM (Rosa & Silva, 2022). 

 

4. Challenge for Future Research 

As illustrated in Table 1, many implementations and applications utilize the P4 language. Its adaptability 
and flexibility to technological developments is an added value. Nevertheless, there are still many challenges in 
P4 research, especially in future networks such as Named-Data Networking, which still needs to be widely 
published, so there are still many opportunities and challenges. 

4.1 Security 

Network security issues remain a concern as technological developments create diverse attack techniques. 
P4 can add security at the data plane level so that detection can be known earlier than application-level security 
(Garzón et al., 2024). These detection techniques are already quite good. Moreover, some already use ML, but 
in terms of mitigation, there are still some that are not good, and even there are still no mitigating actions, so it 
is necessary to improve mitigation with algorithms that are more efficient in choosing actions. In addition, with 
the ability of P4 to configure the data plane, security should be done without the intervention of the control plane 
so it can reduce its work time. 

4.2 Caching 

Caching is a network's most essential and valuable thing because it can improve its system performance. 
In IP networks, this caching system may or may not exist, but in NDN networks, caching is an essential 
component that must exist because it is one of the main components of the NDN (Content Store). However, due 
to the lack of memory available on the P4, finding a way to cache content on the NDN network is a challenge. 
Although there are already several ways, such as separating CS and modifying the P4 library for large memory, 
this will not be easy to implement. So, there is a need for a more efficient and better CS implementation algorithm 
with P4. 

4.3 In-Band Network Telemetry 

In-band network telemetry is a framework for monitoring networks by retrieving information from each 
switch node. Network monitoring with INT can provide benefits such as real-time data, flexibility, and low 
latency. INT has evolved extensively in IP networks and is used for monitoring and congestion control, security, 
load balancing, and others (Lü et al., 2023; Tan et al., 2021). However, in NDN networks, the implementation of 
INT still needs to exist, so it is a challenge for researchers because INT can provide many benefits to the network. 
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4.4 Artificial intelligence  

Machine learning or deep learning is one of the current trends, and it is even used in a network. ML/DL 
makes the system smarter to provide benefits and improve the system's performance (Sapio et al., 2021). 
Therefore, using ML/DL in P4 is a challenge for researchers, as ML/DL can be used for network security, load 
balancing efficiency, congestion problems, and others. 

4.5 Adaptability and Integration 

Considering the existing network infrastructure, it is evident that adapting to new technologies can be 
challenging, especially when a complete overhaul is required. Even if significant performance improvements are 
achievable, such changes are unlikely to be implemented all at once. Therefore, integrating Programming 
Protocol-independent Packet Processors (P4) with the current infrastructure remains a challenge for the future. 
For instance, P4 can be utilized to enhance performance in 5G networks and Software Defined Networks (SDN) 
without necessitating a complete transformation of the underlying infrastructure (Alvarez-Horcajo et al., 2021; 
Memarian et al., 2024). Future work could involve integrating P4 with legacy switches, where P4 switches would 
function as monitoring entities that gather information from legacy switches and implement mitigation strategies 
in case of errors.   

5. Conclusion 

This paper maps existing research and discusses the Protocol for Programming Independent Packet 
Processor (P4) in detail, including its working mechanisms, components, advantages, and implementations. The 
implementations discussed are not only from Software-Defined Network (SDN)/IP networks but also cover their 
implementation in Named-Data Networking (NDN) networks. Implementations in SDN/IP networks are 
numerous and varied, such as Network Security, Load Balancing, Congestion Control, In-band Network 
Telemetry, etc. Conversely, in NDN networks, existing implementations are still limited, and current research 
focuses mainly on the content store. 

P4 offers broad potential for use in various applications or systems. There are many examples of 
implementation in SDN/IP networks that demonstrate P4 flexibility and effectiveness. Additionally, P4 can be 
further developed within NDN networks in the future as it aligns well with the NDN forwarding concept. Thus, 
this study not only highlights current challenges but also identifies future research opportunities that can drive 
further innovation in P4 application deployment. Applications or systems built using P4 operate at the lower layer 
of network architecture; hence, they can shorten work time and enhance system efficiency. 
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