

Buletin Pos dan Telekomunikasi Vol. 21 No. 1 (2023) 62 - 76

62
DOI: 10.17933/bpostel.v21i1.374

Multi-Agent Deep Reinforcement Learning for Handover Management in

Massive Industrial Internet of Things Networks

Naufan Raharya 11, Muhammad Suryanegara1
1Department of Electrical Engineering Universitas Indonesia
1Depok, West Java, Indonesia

email: naufanraharya@ui.ac.id, suryanegara@gmail.com

A R T I C L E I N F O R M A T I O N A B S T R A CT

Received 02 August 2023

Revised 14 September 2023

Accepted 06 November 2023

Keywords :

Collision error probability

Decoding error probability

Handover

Industrial IoT

Mult-agent deep reinforcement learning

The industrial Internet of Things (IoT) is considered one of the

applications in the fifth generation (5G) networks. In this application,

users’ high mobility in a typical industrial scenario needs high

reliability. The increased mobility creates frequent handover, creating

extra control signaling to a new base station (BS). The users’

congestion to the new BSs can lead to an outage. In this paper, we

investigate how to manage the handover of users to improve reliability

in a high-mobility scenario using deep learning. We first use an offline

centralized algorithm to create labels for user association to a BS,

which is done without adding a handover coefficient. Then, we train

the neural network and use the introduced parameter to make the multi-

agent deep reinforcement learning (RL) learn better. This is done to

avoid long iterative methods in reinforcement learning. The results

show that our method can outperform the offline centralized algorithm

by 40% when the handover coefficient increases.

1. Introduction

Industrial Internet-of-Things (IIoT) is one of the typical application scenarios in the fifth generation (5G)

cellular networks. One of the applications in the IIoT is a connected factory, where all industrial machines,

sensors, and other tools are connected to a network (T. M. Fernández-Caramés & P. Fraga-Lamas, 2018). In

this application, any item in the network can talk to each other. For instance, an automated guided vehicle can

deliver items controlled through wireless systems, or a human worker can monitor and collect data in the IioT

devices through wireless systems. With stringent latency and reliability requirements, supporting many IIoT

devices in wireless networks remains an open problem. As a user moves, it may associate with different BSs to

maintain its quality-of-service (QoS). The basic idea is to let users associate with a BS with a high signal-to-

noise ratio (SNR) and low congestion status.On the other hand, handover causes extra communication

overheads, which come from the additional control signaling to the new BS. Besides, if the new BS has a high

traffic load, the newly arrived devices may not be served, resulting in a service outage. Therefore, user

association (UA) policy plays a critical role in IIoT but remains a challenging task, especially when the density

of devices is large (A. Gupta & R. K. Jha, 2015; D. Liu et al., 2016; Q. Ye et al., 2013).

mailto:naufanraharya@ui.ac.id

Buletin Pos dan Telekomunikasi Vol. 21 No. 1 (2023) 62 - 76

63

Handover policies have been investigated for over 30 years (S. Tekinay & B. Jabbari, 1991). The

bottleneck lies in the trade-off between computational complexity for optimizing the handover policy and the

QoS experienced by users. Recently, handover policies were studied in different communication systems, such

as wireless local area networks (Chen et al., 2020), ultra-dense networks with coordinate multipoint

communications (W. Sun et al., 2021), satellite communications (H. Xu et al., 2020), and 5G systems (V.

Yajnanarayana et al., 2020). Their results imply that with recent breakthroughs in deep learning, it is possible to

achieve good QoS with low computational complexity. To get labeled training samples for supervised deep

learning, a centralized optimization algorithm was proposed by (N. Raharya et al., 2021) to maximize the

reliability of the worst-case user. After the offline training, the deep neural network (DNN) is broadcast to all

the devices for distributed execution. Given the local state of a machine, it can select a BS according to the

output of the DNN.

Notably, the centralized optimization algorithm proposed by (N. Raharya et al., 2021) maximized the

reliability without taking handover overhead (HO) into account. Since HO depends on the mobility of devices,

the problem turns out to be a sequential decision-making problem with high complexity, especially when the

state or action space is ample. To solve such kinds of issues, deep Q-learning (DQN) has been applied in (N.

Zhao et al., 2019) and (D. Guo et al., 2020). Specifically, the DQN algorithm learns from the feedback of the

environment by trial and error, where the parameters of the DQN are initialized with random parameters.

Improving the training efficiency of DQN remains an open problem and is crucial for real-time implementation

in wireless networks.

We propose an offline initialization and online training framework for DQN to address the above issue. In

the offline initialization, we utilize the centralized optimization algorithm proposed by (N. Raharya et al.,

2021). to train the DQN without taking HO into account. In this way, we can obtain an excellent initial DQN

without random exploration. After the offline initialization, we apply online training to train the DQN in the

scenario with HO, where the central server collects the experience of different devices and fine-tunes the DQN

centrally. Meanwhile, the updated DQN is broadcast to all the contrivances for distributed execution.

This paper comprises five chapters: introduction, method, result and discussion, and conclusion. The

method part explains the system model and the multi-agent deep reinforcement learning, and the development

and discussion part presents the simulation setup and results and the analysis of the results.

2. Method

This section will explain the system model and formulation used in the paper and our multi-agent deep

reinforcement learning algorithm. The system model and formulation contain the communications system

model on the reliability and the objective function. Then, in the following subsection, we will explain how to

implement multi-agent reinforcement learning in the system model.

2.1. System Model and Formulation

We established uplink transmissions within a cellular network, with N individual users, each using a single

antenna to transmit packets to L base stations equipped with multiple antennas. All BSs are connected to a

central server. Each base station (BS) has various subchannels, adhering to the 5G New Radio (NR) standard.

Additionally, we presume that distinct frequency bands are allocated to individual base stations to prevent

interference from adjacent channels between neighboring BSs.

 Multi-Agent Deep Reinforcement Learning for Handover Management in Massive Industrial Internet of(Naufan Raharya, Muhammad Suryanegara)

64

2.1.1. System Model

In our model, we divide time into discrete slots, each with a duration of Ts. During each space, users can

transmit a packet to a base station (BS) or refrain from doing so. Conforming to the 5G New Radio (NR)

standard, Ts represents the transmission time interval and is shorter than the channel coherence time. We

assume that the large-scale channel fading from the n-th BS to the n-th user remains constant within each

frame but can vary due to user mobility. Figure 1 illustrates the relationship between slots and structures.

The large-scale channel fading and the distance from the n-th user to the l-th BS in the tf-th frame are

represented as αn,l(tf) and dn,l(tf) (in meters), respectively. Their relationship is expressed as follows (Third

Generation Partnership Project (3GPP), 2014)

10 , 10 ,

10log () 34.5 35log [()].
n l f n l f

t d t = − − ... (1)

At the start of tf-th frame, n-th user selects a BS based on αn,l(tf). We represent the user association (UA) of

user n to BS l in tf-th frame as xn,l (tf), where n ranges from 1 to N and l ranges from 1 to L, mathematically

expressed as follows

,

1, if -th user is connected to

() -th BS during -th frame

0, otherwise.

n l f f

n

x t l t=







... (2)

The UA of n-th user to l-th BS can be represented by a vector,
,1 ,

() [(),..., ()]
T

n f n f n L f
t x t x t=x . We consider

a constraint where each user is limited to associating with only one BS, and this can be expressed as follows,

,

1

() 1, 1,..., .
L

n l f

l

x t n N
=

 = .. (3)

1. Collision Probability

We implement a multi-channel slotted ALOHA protocol at the MAC layer to eliminate the need

for the request-and-grant procedure during uplink transmission (B. Singh et al., 2018). λ (packets/slot)

represents the average packet arrival rate of the n-th user, which is assumed to be much smaller than

one. During each time slot, user n chooses a subchannel and transmits a packet with a probability of λ.

5G NR employs repetition as a reliability enhancement technique, as it does not rely on

acknowledgments but sends K duplicates of packets across K consecutive slots (Third Generation

Partnership Project (3GPP), n.d.). In this grant-free (GF) random access (RA) process, packet collisions

occur when multiple users select the same subchannel in the same slot. A packet is deemed lost if all K

repetitions collide with other packets.

The number of users associated with a BS can be given as follows

,

1

() ().
N

l f n l f

n

C t x t
=

= .. (4)

We consider (4) as the bottleneck or congestion status of a BS. (4) shows that there is a high chance of

collisions when the number of associated users is large. Then, the collision probability experienced by

a user with a BS is given as follows,

Buletin Pos dan Telekomunikasi Vol. 21 No. 1 (2023) 62 - 76

65

() 11
() 1 ,() l f

K K
C ts

l f K

s

e M
t

M




−

−+ −
= − ... (5)

Figure 1: Slots, Frames, Episodes during the time observation.

where Ms represents the quantity of subchannels available in a BS. When user n of tf -th frame is

associated with BS l, the collision probability in (5) can be written as follows,

,

1

() () ().
L

n f n l f l f

l

t x t t 
=

= ...(6)

2. Decoding Error Probability

Sending a short packet quickly necessitates a short block length, meaning a decoding error arises

when the received packet is decoded incorrectly. We denote Bw, Ts, bp, as the bandwidth of each

subchannel, the transmission duration of each packet, and the packet size (bits), respectively. The

decoding error probability user n of tf-th frame to BS l is given as follows (C. She et al., 2018, 2021).

,

, ,

,

0

() ln2
() ln 1{ { [()]}}.

n l

n l f n l t p

n l f g Q s w

w s w

t g P b
t f T B

N B T B





= + −E ... (7)

When user n of tf -th frame is associated with BS l, the decoding probability in (7) is expressed as

follows,

, ,

1

() () ().
L

n f n l f n l f

l

t t x t
=

=ò ... (8)

3. Handover

As a user moves, it may associate with another BS, i.e., handover (HO), which boosts signal

strength. However, a frequent HO may cause extra signaling that increases communications latency.

We then denote wn(tf) as a variable indicating whether the associated BS of user n changes at frame tf,

given as follows

, ,

1

() () (1) .| |
L

n f n l f n l f

l

w t x t x t
=

= − − ... (9)

Thus, if user n changes its association at frame tf, the value of (9) is two. Otherwise, the value of (9) is

zero.

 Multi-Agent Deep Reinforcement Learning for Handover Management in Massive Industrial Internet of(Naufan Raharya, Muhammad Suryanegara)

66

4. Problem Formulation

Packet losses can result from collisions occurring at the MAC layer as well as decoding errors in

the physical layer. The packet loss probability in tf-th frame of user n is expressed as follows

Loss

() 1 [1 ()][1 ()] () (),
n f n f n f n f n f

P t t t t t = − − −  +ò ò ..(10)

where the approximation holds true since () () min{ (), ()}
n f n f n f n f

t t t t ò ò when both

() and ()
n f n f

t tò are small in magnitude.

We represent the utility function of user n at tf-th frame by Un(tf), which is defined as follow,

10

() log [() ()] (),
n f n f n f n f

U t t t w t − + −ò ..(11)

where  is an HO coefficient whose value is 0 1  . In this article, we want to maximize (11) for

the worst-case user by solving the following problem,

, () 1

max min{ (),..., ()}

s.t. (2) and .(3)

n l fx t f N f
U t U t

...(12)

Problem (12) is a non-convex integer optimization problem. To solve (12), we need to consider the

handover frequency of users, in which, according to Figure 1, a handover occurs when a user changes

its BS connection in the subsequent frame. Here, handover management is essential in (12) when it is

non-zero to prevent a frequent handover, adding latency to a user’s uplink connection and resulting in a

new link to a BS. In the following section, we develop a distributed and low-complexity solution based

on the deep reinforcement learning algorithm.

2.2. Model-Assisted Multi-Agent Deep Reinforcement Learning

In this section, we develop a model-assisted Multi-Agent Deep Reinforcement Learning (MADRL)

algorithm to solve (12). First, we explain how to formulate a MADRL solution based on Deep Q-Network

(DQN). Then, we apply the formulated DQN into \eqref{objective}, divided into offline initialization and

online learning. In the offline initialization, we use an offline label algorithm to initialize the deep neural

network (DNN) in the DQN. Then, we use the initialized DQN as a model-assisted tool in online learning.

2.2.1. Deep Q-Network Overview

In this subsection, we formulate DQN for our problem optimization in (12). We first define the agent,

environment, state, action, and reward. An agent is the decision maker that determines the UA selection at time

f
t and is designated to n -th user. The environment is defined as the place where

,n l
x configurations are

evaluated. Here, the environment is the objective function in (12) and it is located at the central server. The

action of n-th user is to select a BS at tf, i.e. ()
n f

a t , and () 1, ,
n f

a t L= . The selected action is also equivalent

to set
, ()

() 1
n fn a t f

x t = . We then denote
1 (1)

()
L

n f
t

 +
s as the state of n-th agent at time

f
t . The first L elements

in ()
n f

ts consist of
, ,1 ,
() { (), , ()}

n l f n f n L f
t t t   and

1
() { (), , ()}

l f f L f
t t t   that represent the

normalized value of
,
()

n l f
t and ()

l f
t at time

f
t respectively.

,
()

n l f
t and

,
()

n l f
t are given as follows,

Buletin Pos dan Telekomunikasi Vol. 21 No. 1 (2023) 62 - 76

67

, 10 ,
() log [()].

n l f n l f
t t = − ...(13)

10 ,

() log [(1)].
l f n l f

t t = − − ..(14)

The last element in ()
n f

ts is (1) 1, ,
n f

x t L− = that represents the selects an action in the previous frame,

i.e. 1
f

t − . We then denote ()
n f

r t as the reward of n-th user at time ft , given as follows,

1

() min{ (),..., ()}.
n f f N f

r t U t U t= ..(15)

Note that, based on (15), reward for all users is the same. Another element in DQN is experience replay D .

Here, at time
f

t , n-th user stores a transition from its interaction with the environment into D . The transition

consists of state ()
n f

ts , action ()
n f

a t , reward ()
n f

r t , and next state (1)
n f

t +s and can be represented as a tuple

of { (), (), (), (1)}
n f n f f n f

e s t a t r t s t= + .

In DQN, a deep neural network (DNN) is used to approximate the Q-value. Here, the Q-value is a function

of ()n fts , ()fa t , and  , i.e. ((), (1) |)n f n fQ t a t −s , where is the training parameter of DQN. The Q-

network updates θ by minimizing the loss function given as follows,

21
() ((), (1) |) ,()

n n f n f

et

loss y Q t a t
N

 


= − − s
D

..(16)

where
t

N is the size of minibatch samples and
n

y is a target of n-th user, given as follows,

() max ((1), () |),
n n f a n f n f target

y r t Q t a t = + +s ..(17)

where is the discount factor and
target

 is the target parameter of DQN, which is updated every
f

T frames.

During the learning process, a DQN can be trained by randomly sampling
t

N minibatches of D to reduce the

correlation among training samples, which in turn increases the stability of the algorithm (Mnih et al., 2015).

Then, by using Adam optimizer as proposed by (Kingma & Ba, 2015). with learning rate 0.001, the parameters

of the DQN are optimized to minimize (16). The general framework for DQN is given in Figure 2.

2.2.2. Offline Initialization and Online Learning

In this subsection, we apply the DQN algorithm to our objective function in (12). We classify the solution

into offline initialization and online learning. In offline initialization, we execute offline training to initialize the

DQN at the central server with the UA solution from the label training samples obtained from an offline label

algorithm. The offline label algorithm is summarized as follows. When a user is positioned at the center of a

cell, and far away from other cells, it should be linked with the nearest BS to minimize the probability of

decoding errors. On the other hand, if a user is on the edge of the cell and its large-scale channel gain to two or

more BSs is comparable, then the user should be associated with the BS with a lower traffic load, subject to the

congestion status of the BS. Based on these two ideas, the offline label algorithm finds each user's highest

large-scale channel gain, puts them in a list, and then sorts them in descending order. In this way, the users in

the cell centre are at the top of the list, and those in the edge cell are at the bottom. Then, the algorithm will

 Multi-Agent Deep Reinforcement Learning for Handover Management in Massive Industrial Internet of(Naufan Raharya, Muhammad Suryanegara)

68

solve the association for all users according to (12) sequentially, starting from the user at the top of the list. The

algorithm will select the BS with the lowest packet loss probability in each sequential step according to (11).

After completing the sequential process, users located at the cell edge are redistributed among various BSs to

evenly distribute the traffic load. The offline label algorithm then results on associated BS for n-th user at
f

t

represented by ()
n f

x t . The detailed explanation on the offline algorithm can be found in (N. Raharya et al.,

2021). Next, n-th user sets () ()
n f n f

a t x t= and gets ()
n

r t by substituting
, ()

() 1
n fn a t f

x t = into (3), from which

(11) and (15) are obtained. From here, n-th user can set { (), (), (), (1)}
n f n f f n f

e t a t r t t= +s s , which is stored

in D . The training is then done once per fT frames to minimize loss function in (16). After several episodes,

the DQN offline training is completed and the DQN parameter,  , is updated. Note that  in the offline

initialization is set to zero to reduce the complexity from the sequential process in the offline label algorithm.

Figure 3 describes the offline initialization process.

Figure 2: DQN framework.

In the online learning, we tune the initialized DQN with handover coefficient, i.e. 0  . Here, the UA

decision is done distributively at each user by taking an action according to  -greedy policy, which is given as

follows

argmax ((), (1) |),

() with probability 1

(1), with probability .

n f n f target

n f

n f

Q t a t

a t

a t







−

= −

−







s

...(18)

Buletin Pos dan Telekomunikasi Vol. 21 No. 1 (2023) 62 - 76

69

The selected action translates into
, ()

() 1
n fn a t f

x t = , from which the environment gives reward ()
n f

r t . In

addition, the environment also gives next state feedback, (1)
n f

t +s , to each user and sends

{ (), (), (), (1)}
n f n f f n f

e t a t r t t= +s s to D . Then, the central server randomly samples
t

N minibatch of samples,

trains the DQN parameter  , and updates target DQN parameter,
target

 , i.e.
target

 = every
f

T frames.
target

 is

shared among users to execute an action. The online algorithm process is shown in Figure 4.

Figure 3: Offline Initialization.

Figure 4: Online Learning.

2.2.3. Computational Complexity and Communication Overheads

In the offline label algorithm of the initialization, we need to evaluate ()
fnU t , NL times in each frame.

Consequently, the computational complexity can be defined as ()NLO . To implement the offline label

algorithm, Both BSs and users need to transmit
,
, 1,..., , 1,...,

n l
n N l L = = to the central server. After gaining

the solution, the central server dispatches
,
, 1,..., , 1,..., ,

n l
x n N l L= = to the BSs and users. Hence, the

communication overheads are corresponding to NL . The complete explanation on this algorithm can be found

 Multi-Agent Deep Reinforcement Learning for Handover Management in Massive Industrial Internet of(Naufan Raharya, Muhammad Suryanegara)

70

in (N. Raharya et al., 2021). In the online learning, the centralized server sends the DQN parameter,
target

 , to

all users. Then, each user takes an action according to the  -greedy given
target

 . Subsequently, within each

frame, the BSs transmit information regarding their congestion status to the users. Consequently, the

communication overhead in each frame remains consistent at L.

In terms of computational complexity, the training stage in the offline initialization and online learning is

much higher than the offline label algorithm. However, the training phase is done offline at the central server in

the offline initialization stage, meaning that it is not required to execute training in each frame. The training

stage in the online learning is also done at the central server and the shared parameter,
target

 , is only updated

once per
f

T frames. Thus, the online learning does not need to update the
target

 in each frame. In addition, the

online learning is distributively executed. We can conclude that the proposed distributed DQN has low

complexity.

2.2.4. Structure of the DQN

The DQN has C layers, including (C-2) hidden layers, one input layer, and one output layer. The number

of neurons in the c-th layer is denoted by Jc. The DQN parameter is defined as
[] []

{ , , 1, , }
c c

c C = =W b ,

where 1[] c cJ Jc −
W and

1[] cJc 
b are the weights and biases in c-th layer, respectively. The relationship

between the input, 1
1[]

c
Jc

−


v , and the output,
1[]

c
Jc 

u , of the c-th layer is given as follows,

[] [] [] [] []

(),
c c c c c

f


= +u W v b ...(19)

where
[]

()
c

f


 is the Rectified Linear Unit (ReLU) activation function of the v-th layer, i.e.,

[]

() max(0,).
c

f


=y y ... (20)

The input layer of the DQN is ()
n f

ts and the output layer is a Q-value vector, i.e.

{ ((),1|), , ((), |)}
n f n f

Q t Q t L s s . n-th user will associate to l -th BS, where

 argmax { ((),1|), , ((), |)}.
l n f n f

l Q t Q t L s s ... (21)

Figure 5 shows our DQN structure.

3. Result and Discussion

In this section, we assess the performance of the proposed DQN algorithm and create a performance

comparison between it and several methods, which are the highest signal-to-noise ratio (SNR) policy, offline

label algorithm, and distributed Deep Supervised Learning (DSL). The distributed DSL is a scheme in (N.

Raharya et al. 2021).

Buletin Pos dan Telekomunikasi Vol. 21 No. 1 (2023) 62 - 76

71

Figure 5: Structure of the DQN

Figure 6: Locations of BSs and users.

3.1. Simulation Setup

We examine a square area measuring 500 meters on each side, where four base stations (BSs) are

positioned at the corners, as depicted in Figure 6. This figure illustrates the division of the area into a left-hand

side and a right-hand side region. We apply different user densities to these two regions. Specifically, 90% of

the users are uniformly distributed in the left-hand side region, while the remaining 10% are in the right-hand

side region. Each frame corresponds to one second. Users remain stationary within each frame but change their

positions randomly in subsequent frames at a velocity of 15 meters per frame. Consequently, the UA

configuration may or may not change with each frame. We assume the square area wraps around the edges to

mitigate boundary effects.

We specify two parameters in the simulation; the radio environment parameter in Table 1, which defines

the setting for wireless communication, and the DQN hyperparameter in Table 2, which defines the setting for

the DQN algorithm. The number of episodes and frames in both offline initialization and online learning is 8

episodes and 100 frames. In the online learning, the value of  is updated in each frame of an episode and then

 Multi-Agent Deep Reinforcement Learning for Handover Management in Massive Industrial Internet of(Naufan Raharya, Muhammad Suryanegara)

72

it is reset in the new episode.  in the next frame is updated as (1) () $.
f f decay

t t  + =  The value of  stops

updated until 0.001 = . By updating  , we can balance exploration and exploitation.

To create a realistic scenario, we create a numerical computation and users’ moving dynamics in codes run

on a programming language such as Python. The users can move randomly in one of the four directions, north,

south, west, and east, within a specified number of frames and episodes. Then, the large-scale channel gain of

each user can be obtained. Next, we can compute (12) and solve it using a DQN method.

Table 1. Radio Environment Parameters.

Parameters Value

Ts 0.25 ms

Bw 180 kHz

Pt 0.2 Watt

N0 -174 dBm/Hz

Bp 32 × 8 bits

Φ 1.1

Ms 20

N 100

L 4

Table 2. DQN Hyperparameter.

Parameter Value

Minibatch Size Nt (Samples) 100

Discount Factor 0.95

Experience Replay D size 20000

Minimum value of τ 0.001

decay 0.995

Initial value of  1

Number of hidden layers 2

Number of neurons at a hidden

layer

128

f
T (frames) 10

3.2. Performance Evaluation

To evaluate the reliability of online learning in the DQN scheme, we compare it with three other baselines.

The first one is the highest SNR policy, which is widely used in the existing wireless networks. The second one

is the offline label algorithm that is used to obtain labeled training samples. The third one is distributed Deep

Supervised Learning (DSL), which uses the UA results from the offline label algorithm as labels to train the

DNN. We set the input and output dimensions of the DNN in the distributed DSL to be similar to the input and

output of the DQN. The cumulative distribution functions (CDFs) of packet loss probability experienced by the

worst-case user are provided in Figures 6, 7, and 8.

The results in Figure 7 show that when there is no penalty for doing a handover, i.e., the CDF achieved by

the DQN is similar to the distributed DSL. In addition, both are very close to the Offline Label Algorithm, with

a gap of around 10%. This means that distributed DSL and DQN can accurately approximate the offline label

Buletin Pos dan Telekomunikasi Vol. 21 No. 1 (2023) 62 - 76

73

algorithm. On the other hand, the highest SNR policy is the worst since it only considers the closest BS, which

results in heavy congestion in a particular BS.

The results in Figure 8 show that the packet loss probability of the DQN algorithm is approximately 28%

lower than that of the distributed DSL. This happens because the labels used to train the distributed DSL from

the offline label algorithm are less optimal; as we can see in the figure, the packet loss probability of the DQN

algorithm is 5% lower than that of the offline label algorithm. The figure also shows that the highest SNR

policy has the worst packet loss probability since the congestion in BSs is not balanced, and the loss from

handover is not well addressed.

Figure 9 shows that the packet loss probability of all schemes generally increases compared to the previous

results because there is a higher penalty from handover. The figure also shows that the DQN algorithm

performs far better than other schemes, as shown by its large packet loss probability gap compared to others. In

detail, the gap between the offline label algorithm and the DQN algorithm increases to 40% from the previous

result. This means that the online learning capability in the DQN learning can adapt more to the dynamic

environment.

Figure 7: CDF of packet loss probability of the worst-case user, where 0 = .

 Multi-Agent Deep Reinforcement Learning for Handover Management in Massive Industrial Internet of(Naufan Raharya, Muhammad Suryanegara)

74

Figure 8. CDF of packet loss probability of the worst-case user, where 0.1 = .

Figure 9. CDF of packet loss probability of the worst-case user, where 0.5 =

To summarize the results in Figure 7-9, we create a comparison table on the average packet loss probability

between existing methods and the proposed method as shown in Table 3.

Buletin Pos dan Telekomunikasi Vol. 21 No. 1 (2023) 62 - 76

75

Table 3: Average Packet Loss Probability Comparison between Existing Methods and The Proposed DQN Method.

  = 0  = 0.1  =0.5

Distributed DSL 2 x 10-3 3 x 10-3 0.02

Offline Label Algorithm 1.5 x 10-3 2.6 x 10-3 0.016

DQN 1.5 x 10-3 2.5 x 10-3 0.009

Highest SNR 3 x 10-3 4.5 x 10-3 0.027

4. Conclusion

This paper investigates how to manage a handover in massive IIoT networks to improve packet

transmission reliability by optimizing a UA policy. We propose a DQN-based solution to determine the

associated BS for users in a dynamic environment. The DQN algorithm comprises an offline initialization and

online learning. The offline initialization is utilized to train the DQN without the HO scenario, and it is done to

obtain an excellent initial DQN without random exploration. Then, in the online learning, we fine-tune the

DQN in a centralized manner and let each user execute the UA policy. The results show we can achieve a low

packet loss probability when the HO coefficient is high compared to the offline label algorithm, distributed

DSL, and highest SNR policy. Furthermore, the research in this area can be expanded into the joint resource

allocation and user association problem.

5. Acknowledgements

This paper is based on the original doctoral thesis work by the first author (Raharya, 2021). Part of this

journal was presented in the 2021 IEEE Wireless Communications and Networking Conference (WCNC).

References

A. Gupta & R. K. Jha. (2015). A Survey of 5G Network: Architecture and Emerging Technologies. IEEE Access, 3, 1206–1232.

https://doi.org/10.1109/ACCESS.2015.2461602

B. Singh, O. Tirkkonen, Z. Li, & M. A. Uusitalo. (2018). Contention-Based Access for Ultra-Reliable Low Latency Uplink Transmissions. IEEE

Wireless Communications Letters, 7(2), 182–185. https://doi.org/10.1109/LWC.2017.2763594

C. She, C. Sun, Z. Gu, Y. Li, C. Yang, H. V. Poor, & B. Vucetic. (2021). A Tutorial on Ultrareliable and Low-Latency Communications in 6G:

Integrating Domain Knowledge Into Deep Learning. Proceedings of the IEEE, 109(3), 204–246.

https://doi.org/10.1109/JPROC.2021.3053601

C. She, C. Yang, & T. Q. S. Quek. (2018). Cross-Layer Optimization for Ultra-Reliable and Low-Latency Radio Access Networks. IEEE Transactions

on Wireless Communications, 17(1), 127–141. https://doi.org/10.1109/TWC.2017.2762684

Chen, Z., Luo, Z., Duan, X., & Zhang, L. (2020). Terminal handover in software-defined WLANs. EURASIP Journal on Wireless Communications and

Networking, 2020(1), 68. https://doi.org/10.1186/s13638-020-01681-w

D. Guo, L. Tang, X. Zhang, & Y. -C. Liang. (2020). Joint Optimization of Handover Control and Power Allocation Based on Multi-Agent Deep

Reinforcement Learning. IEEE Transactions on Vehicular Technology, 69(11), 13124–13138. https://doi.org/10.1109/TVT.2020.3020400

D. Liu, L. Wang, Y. Chen, M. Elkashlan, K. -K. Wong, R. Schober, & L. Hanzo. (2016). User Association in 5G Networks: A Survey and an Outlook.

IEEE Communications Surveys & Tutorials, 18(2), 1018–1044. https://doi.org/10.1109/COMST.2016.2516538

H. Xu, D. Li, M. Liu, G. Han, W. Huang, & C. Xu. (2020). QoE-Driven Intelligent Handover for User-Centric Mobile Satellite Networks. IEEE

Transactions on Vehicular Technology, 69(9), 10127–10139. https://doi.org/10.1109/TVT.2020.3000908

Kingma, D. P., & Ba, J. (2015). Adam: A Method for Stochastic Optimization. 3rd International Conference on Learning Representations, ICLR 2015,

San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. http://arxiv.org/abs/1412.6980

 Multi-Agent Deep Reinforcement Learning for Handover Management in Massive Industrial Internet of(Naufan Raharya, Muhammad Suryanegara)

76

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen,

S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., & Hassabis, D. (2015). Human-level control through

deep reinforcement learning. Nature, 518(7540), 529–533. https://doi.org/10.1038/nature14236

N. Raharya, C. She, W. Hardjawana, & B. Vucetic. (2021). Deep Learning for Distributed User Association in Massive Industrial IoT Networks. 2021

IEEE Wireless Communications and Networking Conference (WCNC), 1–6. https://doi.org/10.1109/WCNC49053.2021.9417303

N. Zhao, Y. -C. Liang, D. Niyato, Y. Pei, M. Wu, & Y. Jiang. (2019). Deep Reinforcement Learning for User Association and Resource Allocation in

Heterogeneous Cellular Networks. IEEE Transactions on Wireless Communications, 18(11), 5141–5152.

https://doi.org/10.1109/TWC.2019.2933417

Q. Ye, B. Rong, Y. Chen, M. Al-Shalash, C. Caramanis, & J. G. Andrews. (2013). User Association for Load Balancing in Heterogeneous Cellular

Networks. IEEE Transactions on Wireless Communications, 12(6), 2706–2716. https://doi.org/10.1109/TWC.2013.040413.120676

Raharya, N. (2021). Machine Learning for Massive Connections in Wireless Networks. In Machine Learning for Massive Connections in Wireless

Networks. https://hdl.handle.net/2123/25863

S. Tekinay & B. Jabbari. (1991). Handover and channel assignment in mobile cellular networks. IEEE Communications Magazine, 29(11), 42–46.

https://doi.org/10.1109/35.109664

T. M. Fernández-Caramés & P. Fraga-Lamas. (2018). A Review on Human-Centered IoT-Connected Smart Labels for the Industry 4.0. IEEE Access, 6,

25939–25957. https://doi.org/10.1109/ACCESS.2018.2833501

Third Generation Partnership Project (3GPP). (n.d.). Study on new radio (NR) access technology; physical layer aspects (release 14) TR 38.802 V.2.0.0.

(Standard TR 38.802 V.2.0.0.).

Third Generation Partnership Project (3GPP). (2014). Spatial channel model for Multiple Input Multiple Output (MIMO) simulations TR 25.996 V.12.0.0

[Standard].

V. Yajnanarayana, H. Rydén, & L. Hévizi. (2020). 5G Handover using Reinforcement Learning. 2020 IEEE 3rd 5G World Forum (5GWF), 349–354.

https://doi.org/10.1109/5GWF49715.2020.9221072

W. Sun, L. Wang, J. Liu, N. Kato, & Y. Zhang. (2021). Movement Aware CoMP Handover in Heterogeneous Ultra-Dense Networks. IEEE Transactions

on Communications, 69(1), 340–352. https://doi.org/10.1109/TCOMM.2020.3019388

